PaddlePaddle 标签

基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型

  |   0 评论   |   0 浏览   |   夜雨飘零

本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是,使用深度CNN,对输入图像提取特征,得到特征图。使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布。使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。

使用MTCNN实现人脸检测

  |   0 评论   |   0 浏览   |   夜雨飘零

MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。

PPASR语音识别(入门级)

  |   0 评论   |   0 浏览   |   夜雨飘零

在数据预处理方便,本项目主要是将音频执行梅尔频率倒谱系数(MFCCs)处理,然后在使用出来的数据进行训练,在读取音频时,使用 librosa.load(wav_path, sr=16000)函数读取音频文件,再使用 librosa.feature.mfcc()执行数据处理。MFCC全称梅尔频率倒谱系数。梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率成非线性对应关系。梅尔频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征,主要计算方式分别是预加重,分帧,加窗,快速傅里叶变换(FFT),梅尔滤波器组,离散余弦变换(DCT),最后提取语音数据特征和降低运算维度。本项目使用的全部音频的采样率都是16000Hz,如果其他采样率的音频都需要转为16000Hz,create_manifest.py程序也提供了把音频转为16000Hz。

人脸关键点检测

  |   0 评论   |   0 浏览   |   给我丶鼓励

在这个任务是对坐标进行回归,使用均方误差(Mean Square error )损失函数 paddle.nn.MSELoss() 来做计算,飞桨 2.0 中,在 nn 下将损失函数封装成可调用类。这里使用 paddle.Model 相关的 API 直接进行训练,只需要定义好数据集、网络模型和损失函数即可。

使用模型代码进行 Model 实例生成,使用 prepare 接口定义优化器、损失函数和评价指标等信息,用于后续训练使用。在所有初步配置完成后,调用 fit 接口开启训练执行过程,调用 fit 时只需要将前面定义好的训练数据集、测试数据集、训练轮次(Epoch)和批次大小(batch_size)配置好即可。

使用卷积神经网络进行图像分类

  |   0 评论   |   0 浏览   |   给我丶鼓励

本案例将会使用飞桨提供的API完成数据集的下载并为后续的训练任务准备好数据迭代器。cifar10数据集由60000张大小为32 * 32的彩色图片组成,其中有50000张图片组成了训练集,另外10000张图片组成了测试集。这些图片分为10个类别,将训练一个模型能够把图片进行正确的分类。

一行代码Android上实现人脸检测、关键点检测、口罩检测

  |   0 评论   |   0 浏览   |   夜雨飘零

一行代码实现人脸检测,人脸关键点检测和戴口罩检测。

本项目是使用Paddle Lite 的C++实现的人脸检测,人脸关键点检测和戴口罩检测,并将编译好的动态库和静态库部署在Android应用上,在Android设备上实现人脸检测,人脸关键点检测和戴口罩检测,所以本应不会使用到C++开发,可以只使用笔者提供的JNI接口实现这些功能。在 ai这个module是笔者在开发时使用到的,读者在使用这个项目时,完全可以删除掉,如果是看C++实现,也可以看这个module的源码。

Android基于图像语义分割实现人物背景更换

  |   0 评论   |   0 浏览   |   夜雨飘零

本教程是通过PaddlePaddle的PaddleSeg实现的,该开源库的地址为:http://github.com/PaddlPaddle/PaddleSeg ,使用开源库提供的预训练模型实现人物的图像语义分割,最终部署到Android应用上。关于如何在Android应用上使用PaddlePaddle模型,可以参考笔者的这篇文章《基于Paddle Lite在Android手机上实现图像分类》

本教程开源代码地址:https://github.com/yeyupiaoling/ChangeHumanBackground

基于PaddlePaddle实现的目标检测模型PP-YOLO

  |   1 评论   |   0 浏览   |   夜雨飘零

PP-YOLO是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于YOLOv4模型,PP-YOLO在COCO test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。

本教程源码地址:https://github.com/yeyupiaoling/PP-YOLO

基于Pyramidbox实现的大规模人脸检测

  |   0 评论   |   0 浏览   |   夜雨飘零

今天来水一片文章,基于开源的Pyramidbox大规模人脸检测编写的PaddlePaddle教程,为了方便训练预测,本教程做了一定的修改。这个模型虽然大,但是符合大规模人群中也可以准确地检测到人脸,就是遮挡比较严重也能正确检测。

PyramidBox 是一种基于SSD的单阶段人脸检测器,它利用上下文信息解决困难人脸的检测问题。如下图所示,PyramidBox在六个尺度的特征图上进行不同层级的预测。该工作主要包括以下模块:LFPN、Pyramid Anchors、CPM、Data-anchor-sampling。

基于PaddlePaddle实现的密度估计模型CrowdNet

  |   0 评论   |   0 浏览   |   夜雨飘零

CrowdNet模型是2016年提出的人流密度估计模型,论文为《CrowdNet: A Deep Convolutional Network for DenseCrowd Counting》,CrowdNet模型主要有深层卷积神经网络和浅层卷积神经组成,通过输入原始图像和高斯滤波器得到的密度图进行训练,最终得到的模型估计图像中的行人的数量。当然这不仅仅可以用于人流密度估计,理论上其他的动物等等的密度估计应该也可以。

基于PaddlePaddle实现的目标检测模型SSD

  |   0 评论   |   0 浏览   |   夜雨飘零

SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO V1又有明显的mAP优势。本开源是基于PaddlePaddle实现的SSD,包括MobileNetSSD,MobileNetV2SSD,VGGSSD,ResNetSSD。使用的是VOC格式数据集,同时提供了预训练模型和VOC数据的预测模型。

使用PaddlePaddle实现声纹识别

  |   0 评论   |   0 浏览   |   夜雨飘零

本章介绍如何使用PaddlePaddle实现简单的声纹识别模型,首先你需要熟悉音频分类,没有了解的可以查看这篇文章《基于PaddlePaddle实现声音分类》
。基于这个知识基础之上,我们训练一个声纹识别模型,通过这个模型我们可以识别说话的人是谁,可以应用在一些需要音频验证的项目。

《PaddlePaddle从入门到炼丹》系列教程 置顶!

  |   0 评论   |   0 浏览   |   夜雨飘零

这个专栏是深度学习框架 PaddlePaddle Fluid 版本的教程,开发环境主要是 PaddlePaddle 1.6.0和 Python 3.5。内容涉及了 PaddlePaddle 的安装,并从简单执行1+1运算例子入门PaddlePaddle,借助各个实例一步步入手 PaddlePaddle,通过本系列教程你可以学到如何使用PaddlePaddle搭建卷积神经网络,循环神经网络,并能够训练自定义数据集,最后还可以部署到自己的实际项目中。

《我的PaddlePaddle学习之路》系列教程 置顶!

  |   1 评论   |   0 浏览   |   夜雨飘零

这个专栏是深度学习框架PaddlePaddle V2版本的教程,开发环境主要是PaddlePaddle 0.11.0和Python 2.7。内容涉及了PaddlePaddle的安装,并从手写数据集识别入手,借助实例一步步入手PaddlePaddle,通过实例掌握PaddlePaddle的使用,从零进入人工智能领域。

《PaddlePaddle从入门到炼丹》十五——把预测模型部署到Android手机上

  |   1 评论   |   0 浏览   |   夜雨飘零

现在越来越多的手机要使用到深度学习了,比如一些图像分类,目标检测,风格迁移等等,之前都是把数据提交给服务器完成的。但是提交给服务器有几点不好,首先是速度问题,图片上传到服务器需要时间,客户端接收结果也需要时间,这一来回就占用了一大半的时间,会使得整体的预测

《PaddlePaddle从入门到炼丹》十四——把预测模型部署在服务器

  |   3 评论   |   0 浏览   |   夜雨飘零

如果读者使用过百度等的一些图像识别的接口,比如百度的细粒度图像识别接口,应该了解这个过程,省略其他的安全方面的考虑。这个接口大体的流程是,我们把图像上传到百度的网站上,然后服务器把这些图像转换成功矢量数据,最后就是拿这些数据传给深度学习的预测接口,比如是

《PaddlePaddle从入门到炼丹》十三——自定义图像数生成

  |   0 评论   |   0 浏览   |   夜雨飘零

我们在第六章介绍了生成对抗网络,并使用生成对抗网络训练mnist数据集,生成手写数字图片。那么本章我们将使用对抗生成网络训练我们自己的图片数据集,并生成图片。在第六章中我们使用的黑白的单通道图片,在这一章中,我们使用的是3通道的彩色图。