计算机视觉 标签

基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型

  |   0 评论   |   0 浏览   |   夜雨飘零

本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是,使用深度CNN,对输入图像提取特征,得到特征图。使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布。使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。

人脸关键点检测

  |   0 评论   |   0 浏览   |   给我丶鼓励

在这个任务是对坐标进行回归,使用均方误差(Mean Square error )损失函数 paddle.nn.MSELoss() 来做计算,飞桨 2.0 中,在 nn 下将损失函数封装成可调用类。这里使用 paddle.Model 相关的 API 直接进行训练,只需要定义好数据集、网络模型和损失函数即可。

使用模型代码进行 Model 实例生成,使用 prepare 接口定义优化器、损失函数和评价指标等信息,用于后续训练使用。在所有初步配置完成后,调用 fit 接口开启训练执行过程,调用 fit 时只需要将前面定义好的训练数据集、测试数据集、训练轮次(Epoch)和批次大小(batch_size)配置好即可。

使用卷积神经网络进行图像分类

  |   0 评论   |   0 浏览   |   给我丶鼓励

本案例将会使用飞桨提供的API完成数据集的下载并为后续的训练任务准备好数据迭代器。cifar10数据集由60000张大小为32 * 32的彩色图片组成,其中有50000张图片组成了训练集,另外10000张图片组成了测试集。这些图片分为10个类别,将训练一个模型能够把图片进行正确的分类。

Android使用CameraX实现相机快速实现对焦和放大缩小

  |   0 评论   |   0 浏览   |   夜雨飘零

Android使用CameraX实现相机快速实现对焦和放大缩小,本教程介绍如何使用CameraX实现相机点击对焦和放大缩小,单击对焦指定位置,使用双指放大缩小图像。下面是页面代码,使用PreviewView预览相机图像,然后使用FocusImageView自定义View来显示对焦框。CameraXPreviewViewTouchListener.kt点监听事件,用于监听屏幕的点击监听动作。

基于TNN在Android手机上实现图像分类

  |   0 评论   |   0 浏览   |   夜雨飘零

TNN:由腾讯优图实验室打造,移动端高性能、轻量级推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时也借鉴了业界主流开源框架高性能和良好拓展性的优点。

基于MNN在Android手机上实现图像分类

  |   0 评论   |   0 浏览   |   夜雨飘零

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。

下面就介绍如何使用MNN在Android设备上实现图像分类。

一行代码Android上实现人脸检测、关键点检测、口罩检测

  |   0 评论   |   0 浏览   |   夜雨飘零

一行代码实现人脸检测,人脸关键点检测和戴口罩检测。

本项目是使用Paddle Lite 的C++实现的人脸检测,人脸关键点检测和戴口罩检测,并将编译好的动态库和静态库部署在Android应用上,在Android设备上实现人脸检测,人脸关键点检测和戴口罩检测,所以本应不会使用到C++开发,可以只使用笔者提供的JNI接口实现这些功能。在 ai这个module是笔者在开发时使用到的,读者在使用这个项目时,完全可以删除掉,如果是看C++实现,也可以看这个module的源码。

基于insightface实现的人脸识别和人脸注册

  |   0 评论   |   0 浏览   |   夜雨飘零

然后开始编写人脸识别和人脸注册工具类,使用 insightface.app.FaceAnalysis()可以获取模型对象,这里包含了三个模型,首先是人脸检测模型,然后是人脸特征提取模型,和最后的性别年龄识别模型。使用 model.prepare()可以配置 ctx_id指定使用哪一块GPU,如果是负数则是使用CPU执行预测,nms配置的是人脸检测的阈值。load_faces()函数是加载人脸库中的人脸,用于之后的人脸识别对比。

Android基于图像语义分割实现人物背景更换

  |   0 评论   |   0 浏览   |   夜雨飘零

本教程是通过PaddlePaddle的PaddleSeg实现的,该开源库的地址为:http://github.com/PaddlPaddle/PaddleSeg ,使用开源库提供的预训练模型实现人物的图像语义分割,最终部署到Android应用上。关于如何在Android应用上使用PaddlePaddle模型,可以参考笔者的这篇文章《基于Paddle Lite在Android手机上实现图像分类》

本教程开源代码地址:https://github.com/yeyupiaoling/ChangeHumanBackground

基于PaddlePaddle实现的目标检测模型PP-YOLO

  |   1 评论   |   0 浏览   |   夜雨飘零

PP-YOLO是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于YOLOv4模型,PP-YOLO在COCO test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。

本教程源码地址:https://github.com/yeyupiaoling/PP-YOLO

基于Paddle Lite在Android手机上实现图像分类

  |   1 评论   |   0 浏览   |   夜雨飘零

Paddle Lite是飞桨基于Paddle Mobile全新升级推出的端侧推理引擎,在多硬件、多平台以及硬件混合调度的支持上更加完备,为包括手机在内的端侧场景的AI应用提供高效轻量的推理能力,有效解决手机算力和内存限制等问题,致力于推动AI应用更广泛的落地。

基于Tensorflow2 Lite在Android手机上实现图像分类

  |   2 评论   |   0 浏览   |   夜雨飘零

Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。

基于MTCNN和MobileFaceNet实现的人脸识别

  |   0 评论   |   0 浏览   |   夜雨飘零

本教程是教程是介绍如何使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别,并不介绍如何训练模型。关于如何训练MTCNN和MobileFaceNet,请阅读这两篇教程 MTCNN-TensorflowMobileFaceNet_TF ,这两个模型都是比较轻量的模型,所以就算这两个模型在CPU环境下也有比较好的预测速度,众所周知,笔者比较喜欢轻量级的模型,如何让我从准确率和预测速度上选择,我会更倾向于速度,因本人主要是研究深度学习在移动设备等嵌入式设备上的的部署。好了,下面就来介绍如何实现这两个模型实现三种人脸识别,使用路径进行人脸注册和人脸识别,使用摄像头实现人脸注册和人脸识别,通过HTTP实现人脸注册和人脸识别。

基于Pyramidbox实现的大规模人脸检测

  |   0 评论   |   0 浏览   |   夜雨飘零

今天来水一片文章,基于开源的Pyramidbox大规模人脸检测编写的PaddlePaddle教程,为了方便训练预测,本教程做了一定的修改。这个模型虽然大,但是符合大规模人群中也可以准确地检测到人脸,就是遮挡比较严重也能正确检测。

PyramidBox 是一种基于SSD的单阶段人脸检测器,它利用上下文信息解决困难人脸的检测问题。如下图所示,PyramidBox在六个尺度的特征图上进行不同层级的预测。该工作主要包括以下模块:LFPN、Pyramid Anchors、CPM、Data-anchor-sampling。

Mediapipe框架在Android上的使用

  |   0 评论   |   0 浏览   |   夜雨飘零

MediaPipe是用于构建跨平台多模态应用ML管道的框架,其包括快速ML推理,经典计算机视觉和媒体内容处理(如视频解码)。下面是用于对象检测与追踪的MediaPipe示例图,它由4个计算节点组成:PacketResampler计算器;先前发布的ObjectDetection子图;围绕上述BoxTrakcing子图的ObjectTracking子图;以及绘制可视化效果的Renderer子图。