如果您是那种希望尽快入门的男孩(或女孩),则可以跳过本节,直接进入代码。但是为了更好地了解 face-api.js 中用于实现人脸识别的方法,我强烈建议您继续学习,因为我经常被问到这一点。
为简单起见,我们实际上要实现的目标是,识别出具有其面部图像的人,例如 输入图像。我们这样做的方法是为我们要识别的每个人提供一张(或多张)图像,并标上人名,例如参考数据。现在我们将输入图像与参考数据进行比较,找到最相似参考图片。如果两个图像足够相似,我们将输出人名,否则我们输出 '未知'。
听起来像是个计划!但是,仍然存在两个问题。首先,如果我们有一个显示多个人的图像并且我们想要识别所有这些人怎么办?其次,我们需要能够为两个面部图像获得这种相似性度量,以便对其进行比较...
本章介绍如何使用 PaddlePaddle 实现简单的声纹识别模型,首先你需要熟悉音频分类,没有了解的可以查看这篇文章《基于 PaddlePaddle 实现声音分类》
。基于这个知识基础之上,我们训练一个声纹识别模型,通过这个模型我们可以识别说话的人是谁,可以应用在一些需要音频验证的项目。
本章介绍如何使用 Tensorflow 实现简单的声纹识别模型,首先你需要熟悉音频分类,没有了解的可以查看这篇文章《基于 Tensorflow 实现声音分类》。基于这个知识基础之上,我们训练一个声纹识别模型,通过这个模型我们可以识别说话的人是谁,可以应用在一些需要音频验证的项目。
本章我们来介绍如何使用 PaddelPaddle 训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
本章我们来介绍如何使用 Tensorflow 训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。话不多说,来干。
这个专栏是深度学习框架 PaddlePaddle Fluid 版本的教程,开发环境主要是 PaddlePaddle 1.6.0 和 Python 3.5。内容涉及了 PaddlePaddle 的安装,并从简单执行 1+1 运算例子入门 PaddlePaddle,借助各个实例一步步入手 PaddlePaddle,通过本系列教程你可以学到如何使用 PaddlePaddle 搭建卷积神经网络,循环神经网络,并能够训练自定义数据集,最后还可以部署到自己的实际项目中。
这个专栏是深度学习框架 PaddlePaddle V2 版本的教程,开发环境主要是 PaddlePaddle 0.11.0 和 Python 2.7。内容涉及了 PaddlePaddle 的安装,并从手写数据集识别入手,借助实例一步步入手 PaddlePaddle,通过实例掌握 PaddlePaddle 的使用,从零进入人工智能领域。
在深度学习中,我们经常会使用到 sigmoid 函数作为我们的激活函数,特别是在二分类上,sigmoid 函数是比较好的一个选择,以下就是 sigmoid 函数的公式:
现在越来越多的手机要使用到深度学习了,比如一些图像分类,目标检测,风格迁移等等,之前都是把数据提交给服务器完成的。但是提交给服务器有几点不好,首先是速度问题,图片上传到服务器需要时间,客户端接收结果也需要时间,这一来回就占用了一大半的时间,会使得整体的预测
如果读者使用过百度等的一些图像识别的接口,比如百度的细粒度图像识别接口,应该了解这个过程,省略其他的安全方面的考虑。这个接口大体的流程是,我们把图像上传到百度的网站上,然后服务器把这些图像转换成功矢量数据,最后就是拿这些数据传给深度学习的预测接口,比如是
我们在第六章介绍了生成对抗网络,并使用生成对抗网络训练 mnist 数据集,生成手写数字图片。那么本章我们将使用对抗生成网络训练我们自己的图片数据集,并生成图片。在第六章中我们使用的黑白的单通道图片,在这一章中,我们使用的是 3 通道的彩色图。
我们在第五章学习了循环神经网络,在第五章中我们使用循环神经网络实现了一个文本分类的模型,不过使用的数据集是 PaddlePaddle 自带的一个数据集,我们并没有了解到 PaddlePaddle 是如何使用读取文本数据集的,那么本章我们就来学习一下如何使用 PaddlePaddle 训练自己的文本数据集。我
本章将介绍如何使用 PaddlePaddle 训练自己的图片数据集,在之前的图像数据集中,我们都是使用 PaddlePaddle 自带的数据集,本章我们就来学习如何让 PaddlePaddle 训练我们自己的图片数据集。
VisualDL 是一个面向深度学习任务设计的可视化工具,包含了 scalar、参数分布、模型结构、图像可视化等功能。可以这样说:“所见即所得”。我们可以借助 VisualDL 来观察我们训练的情况,方便我们对训练的模型进行分析,改善模型的收敛情况。
在深度学习训练中,例如图像识别训练,每次从零开始训练都要消耗大量的时间和资源。而且当数据集比较少时,模型也难以拟合的情况。基于这种情况下,就出现了迁移学习,通过使用已经训练好的模型来初始化即将训练的网络,可以加快模型的收敛速度,而且还能提高模型的准确率。这
本系列教程中,前面介绍的都没有保存模型,训练之后也就结束了。那么本章就介绍如果在训练过程中保存模型,用于之后预测或者恢复训练,又或者由于其他数据集的预训练模型。本章会介绍三种保存模型和使用模型的方式。
本章介绍使用 PaddlePaddle 实现强化学习,通过自我学习,完成一个经典控制类的游戏,相关游戏介绍可以在 Gym 官网上了解。我们这次玩的是一个 CartPole-v1
游戏,操作就是通过控制滑块的左右移动,不让竖着的
我们上一章使用 MNIST 数据集进行训练,获得一个可以分类手写字体的模型。如果我们数据集的数量不够,不足于让模型收敛,最直接的是增加数据集。但是我们收集数据并进行标注是非常消耗时间了,而最近非常火的生成对抗网络就非常方便我们数据的收集。对抗生成网络可以根据之前的
除了卷积神经网络,深度学习中还有循环神经网络也是很常用的,循环神经网络更常用于自然语言处理任务上。我们在这一章中,我们就来学习如何使用 PaddlePaddle 来实现一个循环神经网络,并使用该网络完成情感分析的模型训练。
上一章我们通过学习线性回归例子入门了深度学习,同时也熟悉了 PaddlePaddle 的使用方式,那么我们在本章学习更有趣的知识点卷积神经网络。深度学习之所以那么流行,很大程度上是得益于它在计算机视觉上得到非常好的效果,而在深度学习上几乎是使用卷积神经网络来提取图像的特征