深度学习 标签

基于PaddlePaddle 2.0动态图实现的CRNN文字识别模型

  |   0 评论   |   0 浏览   |   夜雨飘零

本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是,使用深度CNN,对输入图像提取特征,得到特征图。使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布。使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。

使用MTCNN实现人脸检测

  |   0 评论   |   0 浏览   |   夜雨飘零

MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。

基于TNN在Android手机上实现图像分类

  |   0 评论   |   0 浏览   |   夜雨飘零

TNN:由腾讯优图实验室打造,移动端高性能、轻量级推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时也借鉴了业界主流开源框架高性能和良好拓展性的优点。

基于MNN在Android手机上实现图像分类

  |   0 评论   |   0 浏览   |   夜雨飘零

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。

下面就介绍如何使用MNN在Android设备上实现图像分类。

基于insightface实现的人脸识别和人脸注册

  |   0 评论   |   0 浏览   |   夜雨飘零

然后开始编写人脸识别和人脸注册工具类,使用 insightface.app.FaceAnalysis()可以获取模型对象,这里包含了三个模型,首先是人脸检测模型,然后是人脸特征提取模型,和最后的性别年龄识别模型。使用 model.prepare()可以配置 ctx_id指定使用哪一块GPU,如果是负数则是使用CPU执行预测,nms配置的是人脸检测的阈值。load_faces()函数是加载人脸库中的人脸,用于之后的人脸识别对比。

基于PaddlePaddle实现的目标检测模型PP-YOLO

  |   1 评论   |   0 浏览   |   夜雨飘零

PP-YOLO是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于YOLOv4模型,PP-YOLO在COCO test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。

本教程源码地址:https://github.com/yeyupiaoling/PP-YOLO

基于Paddle Lite在Android手机上实现图像分类

  |   1 评论   |   0 浏览   |   夜雨飘零

Paddle Lite是飞桨基于Paddle Mobile全新升级推出的端侧推理引擎,在多硬件、多平台以及硬件混合调度的支持上更加完备,为包括手机在内的端侧场景的AI应用提供高效轻量的推理能力,有效解决手机算力和内存限制等问题,致力于推动AI应用更广泛的落地。

基于Pytorch实现的MASR中文语音识别

  |   0 评论   |   0 浏览   |   夜雨飘零

MASR使用的是门控卷积神经网络(Gated Convolutional Network),网络结构类似于Facebook在2016年提出的Wav2letter,只使用卷积神经网络(CNN)实现的语音识别。但是使用的激活函数不是 ReLU或者是 HardTanh,而是 GLU(门控线性单元)。因此称作门控卷积网络。根据我的实验,使用 GLU的收敛速度比 HardTanh要快。

  • 以下用字错误率CER来衡量模型的表现,CER = 编辑距离 / 句子长度,越低越好,大致可以理解为 1 - CER 就是识别准确率。

基于MTCNN和MobileFaceNet实现的人脸识别

  |   0 评论   |   0 浏览   |   夜雨飘零

本教程是教程是介绍如何使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别,并不介绍如何训练模型。关于如何训练MTCNN和MobileFaceNet,请阅读这两篇教程 MTCNN-TensorflowMobileFaceNet_TF ,这两个模型都是比较轻量的模型,所以就算这两个模型在CPU环境下也有比较好的预测速度,众所周知,笔者比较喜欢轻量级的模型,如何让我从准确率和预测速度上选择,我会更倾向于速度,因本人主要是研究深度学习在移动设备等嵌入式设备上的的部署。好了,下面就来介绍如何实现这两个模型实现三种人脸识别,使用路径进行人脸注册和人脸识别,使用摄像头实现人脸注册和人脸识别,通过HTTP实现人脸注册和人脸识别。

基于Pyramidbox实现的大规模人脸检测

  |   0 评论   |   0 浏览   |   夜雨飘零

今天来水一片文章,基于开源的Pyramidbox大规模人脸检测编写的PaddlePaddle教程,为了方便训练预测,本教程做了一定的修改。这个模型虽然大,但是符合大规模人群中也可以准确地检测到人脸,就是遮挡比较严重也能正确检测。

PyramidBox 是一种基于SSD的单阶段人脸检测器,它利用上下文信息解决困难人脸的检测问题。如下图所示,PyramidBox在六个尺度的特征图上进行不同层级的预测。该工作主要包括以下模块:LFPN、Pyramid Anchors、CPM、Data-anchor-sampling。

基于PaddlePaddle实现的密度估计模型CrowdNet

  |   0 评论   |   0 浏览   |   夜雨飘零

CrowdNet模型是2016年提出的人流密度估计模型,论文为《CrowdNet: A Deep Convolutional Network for DenseCrowd Counting》,CrowdNet模型主要有深层卷积神经网络和浅层卷积神经组成,通过输入原始图像和高斯滤波器得到的密度图进行训练,最终得到的模型估计图像中的行人的数量。当然这不仅仅可以用于人流密度估计,理论上其他的动物等等的密度估计应该也可以。

Pytorch迁移学习

  |   0 评论   |   0 浏览   |   给我丶鼓励

Pytorch迁移学习。在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对很少。取而代之的是,通常在非常大的数据集上对ConvNet进行预训练(例如ImageNet,其中包含120万个图像,具有1000个类别),然后将ConvNet用作初始化或固定特征提取器以完成感兴趣的任务。