人工智能 人工智能的相关文章

Caffe模型转PaddlePaddle的Fluid版本预测模型

  |   0 评论   |   0 浏览   |   夜雨飘零

有不少开发者在学习深度学习框架的时候会开源一些训练好的模型,我们可以使用这些模型来运用到我们自己的项目中。如果使用的是同一个深度学习框架,那就很方便,可以直接使用,但是如果时不同深度学习框架,我们就要对模型转换一下。下面我们就介绍如何把 Caffe 的模型转换成 PaddlePaddle 的 Fluid 模型。

在Android手机上使用PaddleMobile实现图像分类

  |   0 评论   |   0 浏览   |   夜雨飘零

现在越来越多的手机要使用到深度学习了,比如一些图像分类,目标检测,风格迁移等等,之前都是把数据提交给服务器完成的。但是提交给服务器有几点不好,首先是速度问题,图片上传到服务器需要时间,客户端接收结果也需要时间,这一来回就占用了一大半的时间,会使得整体的预测

深度学习神经网络中正则化的使用

  |   0 评论   |   0 浏览   |   夜雨飘零

如果训练数据集不够大,由于深度学习模型具有非常大的灵活性和容量,以至于过度拟合可能是一个严重的问题,为了解决这个问题,引入了正则化的这个方法。要在神经网络中加入正则化,除了在激活层中加入正则函数,应该 dropout 也是可以起到正则的效果。我们来试试吧。

《Improving Deep Neural Networks》的理论知识点

  |   0 评论   |   0 浏览   |   夜雨飘零
  1. 如果有 10,000,000 个例子,数据集拆分一般是 98% 训练,1% 验证,1% 测试。
  2. 验证和测试的数据集通常是来自同样的分配。
  3. 如果神经网络模型有很大的差异,一般的解决办法是增加数据集和添加正则。
  4. 当训练集错误较小,而验证集较大时,通常是增加正则 lambda、增加数据集。
  5. 当增加正则化超参数 lambda 时,权重会被推向更小,接近 0.

Python2实现简单的爬虫

  |   0 评论   |   0 浏览   |   夜雨飘零

有时候我们需要一些网络数据来工作、学习,比如我们做深度学习的。当做一个分类任务时,需要大量的图像数据,这个图像数据如果要人工一个个下载的,这很明显不合理的,这是就要用到爬虫程序。使用爬虫程序帮我们下载所需要的图像。那么我们就开始学习爬虫吧。

《我的PaddlePaddle学习之路》笔记十四——把PaddlePaddle迁移到Android设备上

  |   0 评论   |   0 浏览   |   夜雨飘零

PaddlePaddle 还可以迁移到 Android 或者 Linux 设备上,在这些部署了 PaddlePaddle 的设备同样可以做深度学习的预测。在这篇文章中我们就介绍如何把 PaddlePaddle 迁移到 Android 手机上,并在 Android 的 APP 中使用 PaddlePaddle。

《我的PaddlePaddle学习之路》笔记十三——把PaddlePaddle部署到网站服务器上

  |   0 评论   |   0 浏览   |   夜雨飘零

如果读者使用过百度等的一些图像识别的接口,比如百度的细粒度图像识别接口,应该了解这个过程,省略其他的安全方面的考虑。这个接口大体的流程是,我们把图像上传到百度的网站上,然后服务器把这些图像转换成功矢量数据,最后就是拿这些数据

《我的PaddlePaddle学习之路》笔记十二——可视化工具VisualDL的使用

  |   0 评论   |   0 浏览   |   夜雨飘零

VisualDL 是一个面向深度学习任务设计的可视化工具,包含了 scalar、参数分布、模型结构、图像可视化等功能。可以这样说:“所见即所得”。我们可以借助 VisualDL 来观察我们训练的情况,方便我们对训练的模型进行分析,改善模型的收敛情况。

《我的PaddlePaddle学习之路》笔记十一——新版本Fluid的使用

  |   0 评论   |   0 浏览   |   夜雨飘零

PaddlePaddle 的 Fluid 是 0.11.0 提出的,Fluid 是设计用来让用户像 Pytorch 和 Tensorflow Eager Execution 一样执行程序。在这些系统中,不再有模型这个概念,应用也不再包含一个用于描述 Operator 图或者一系列层的符号描述,而是像通用程序那样描述训练或者预测的过程。而 Fluid 与 PyTorch 或 Eager Execution 的区别在于 Fluid 不依赖 Python 提供的控制流,例如 if-else-then 或者

《我的PaddlePaddle学习之路》笔记十——自定义图像数据集实现目标检测

  |   0 评论   |   0 浏览   |   夜雨飘零

在阅读这一篇文章之前,要先阅读上一篇文章使用 VOC 数据集的实现目标检测,因为大部分的程序都是使用上一篇文章所使用到的代码和数据集的格式。在这篇文章中介绍如何使用自定义的图像数据集来做目标检测。